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CONTRIBUTION TO  SOLVING A TWO-DIMENSIONAL 
CUTTING STOCK PROBLEM  WITH TWO OBJECTIVES 
 
           Abstract. In this paper, we propose a technique for solving a two-
dimensional cutting stock problem with two-objective. It's about cutting a number 
of rectangular pieces from a set of raw material plates, themselves identical. These 
are available in unlimited quantities, where we try to minimize the total area lost 
and the number of setups to be carried out. This technique is made up of two 
stages, the first of which consists in generating all the feasible cutting patterns and 
the second makes it possible to construct cutting plans, satisfying the demands, 
thanks to a subset of these patterns. These different cutting plans represent all the 
feasible solutions, each of which is characterized by a number of setups and the 
total quantity of falls. 
           Keywords. two-dimensional cutting stock problem with two-objective, total 
area lost, setups, feasible cutting, pattern, cutting plan. 
 
           JEL Classification: C6 
 
           1. Introduction 
 
                The cutting stock problem, with their different dimensions, to be a real 
challenge for researchers in operations research. They appear in several production 
contexts such as fabric, glass, paper, aluminum or cardboard and other metals, etc. 
In order to improve these problems, several authors have proposed to cut a set of 
geometric shapes of different dimensions from a cutting pattern with fixed 
dimensions. In the early 60, (Gilmore and Gomory, 1961), used linear 
programming methods for solving the one- and two-dimensional cutting stock 
problem (for an approximate resolution). The same authors (Gilmore and Gomory, 
1963; Gilmore and Gomory, 1965) have generalized it to two- and several-
dimensional cutting stock problems based on other methods of exact resolution. 
(Cintra and Wakabayashi, 2004) were interested in the study of the two-
dimensional cutting stock problem and packing of bandage when we propose an 
algorithm based on dynamic programming and column generation, as well as, 
(Mellouli and Dammak, 2008) who developed an algorithm for two-dimensional 
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cutting stock problems based on a procedure for generating cutting patterns. 
(Stéphane, 2015) have dealt with a two-dimensional cutting stock problem with 
setups cost in the paper industry by using the genetic algorithm. (Rodrigo et al.  
 2012) have developed an algorithm, based on the use of the Branch and Bound 
method to generate the feasible cutting patterns for two-dimensional cutting stock 
problem, also (Yalaoui and Burkard, 2009) used hybrid optimization by ant 
colonies for the two-dimensional cutting stock problem. Other more interesting 
contributions have been proposed by: (Wäscher et al. 2007), (Lodi et al. 2002), 
(Belov and Scheithauer, 2006), (Michael and Damowicz, 1976), (Suliman Saad, 
2001), (Wang, 1983), (Toufik Saadi, 2012), (Zelle and Burkard, 2003). 
 
         In this work, we are interested in solving two-dimensional cutting stock 
problems with two-objective, we seek to minimize the total area lost and the 
number of setups to be carried out. For this purpose we organize this paper as 
follows. In the next section, we present the definition and formulation of two-
dimensional cutting stock problem with setups. The third section is devoted to the 
resolution approach. In the fourth section we develop an algorithm to solve the 
problem. In section five we illustrate the proposed method with examples and we 
end with a conclusion. 
 
            2. Mathematical formulation and methods 
 
               Definition 1.We call a feasible cutting pattern a set of pieces cut from an 
object and the position of each (of them) in the object. 
Definition 2.We call a feasible cutting plan a set of feasible cutting patterns 
making it possible to satisfy the different types of demand. 
2.1 Mathematical formulation of the multi-objective optimization problem 
        A multi-objective combinatorial optimization problem (MOCO) is a decision 
problem which consists in jointly optimizing a set of k linear objective functions (k 
≥ 2), often conflicting and subject to a set of linear constraints. 
 
This problem is defined by: 
 

                           Optimize		 F(x) = f (x), f (x), … , f (x)s. t.			x ∈ X.																																																				                     (1)       

 
Where k is the number of objectives (k ≥ 2), x = (x1, x2… xn) is the vector 
representing the decision variables, each of the functions fi(x) is to be optimized i = 
1… k, i.e. to say to minimize or maximize and X represents the set of feasible 
solutions. The set ℝn which contains X is called a decision space. The set ℝk which 
contains F is called the criteria space or the objective space. 
 
Definition 3. Let be two vectors of criteria z, z′ ∈ F(X). We say that z dominates z′ 
if and only if z ≤	z′ and z ≠ z′ (i.e. z ≤	 z′ ∀ i = 1…k and zi < z′ for at least one 



 
 
 
 
 
 
Contribution to  Solving a Two-Dimensional Cutting Stock Problem with Two 
Objectives 
________________________________________________________________ 
 

181 
 
 
 
 

 

index i). This means that z is at least as good as z′  'in all objectives and, z is 
strictly better than z′ in at least one objective. 
Definition 4. A solution x⃰  ∈ X is an efficient solution if there is no x ∈ X such that 
F (x) dominates F (x⃰). Conversely x⃰ is inefficient. 
Therefore, a solution x⃰ is efficient if its criterion vector is not dominated by any 
criterion vector of another solution in X. That is, it is not possible to move in a 
feasible direction to decrease one of the objectives, without necessarily increasing 
at least one of the other objective values. The limiting efficiency is also known as 
Pareto optimal and the curve in the objective space formed by the non-dominated 
vectors which are in the Pareto optimal set is called the Pareto front. 
 2. 2 Mathematical formulation of the multi-objective cutting problem 
         We consider a cutting stock problem which consists in cutting a rectangle of 
length L and width W into several parts called pieces of length li < L and width w  
< W where i = 1,…, n, the rectangles in stock are available in unlimited quantities 
and identical sizes L × W, in which to satisfy orders and minimize the total area 
lost as well as the number of setups. 
 
In this work we are interested in finding the set of efficient solutions of the 
following two-objective problem: 
 

           

	Min	 f (x) = Min	 S × ∑ x − ∑ s d 				(trim	loss)			Min	 f (x) = Min ∑ δ(x ) 																													(stups)										∑ p x ≥ d 							i = 1,… , n																																																										x ∈ ℕ														j = 1,… , T																																																												
δ(x ) = 1		if	x 	 > 00		if	x 	 = 0																																																																																																																																																											

        (2) 
 
Where S = L × W is the area of the main leaf, si = li × wi is the area of pieces 
requested, pij is the number of occurrences of the ith piece in the jth pattern, di is the 
different types of requests, T is the number of cutting patterns, xj is the number of 

times the jth cutting pattern is used, and δ(x ) = 1		if	x 	 > 00		if	x 	 = 0 

       3. Methods 
 
          In this paragraph, we present a technique for solving a two-objective cutting 
stock problem consisting of two steps: the first consists in generating the 
achievable cutting patterns. The second step makes it possible to construct cutting 
plans, satisfying all requests (feasible solutions) and also makes it possible to find 
the best cutting plans taking into account the two objectives.  
 3.1 Generation of feasible cutting patterns 
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        The idea of this developed heuristic consists in generating a cutting matrix 
(denoted P of size m × n), in which each line of P represents a cutting pattern. So 
according to the classification of all the parts in descending order (s1 > s2 >… > sn) 
and using a non-guillotine cut, the algorithm starts to place the first part c1 of area 

s1 = l1 × w1 on the rectangle R of the area S = L × W by p11 = , where ⌊⌋ is the 

lower integer part, the following pieces can be placed on the remaining part of S 

by: for j = 1 and i varying from 2 to n, p1i = 
∑ ×

, where si = li × wi, the 

elements: p11, p12,…. p1n forms the first row of the matrix P, then the algorithm 
decreased the number of times the piece c1 placed on R by 1, (p21 = p11- l), the 
following pieces placed on the remaining part of R by: for j = 2 and i varying from 

2 to n, p2i = 
∑ ×

 until the cancellation of p11, The algorithm must be 

updated by fixing the first part to these values found previously, by i = i + 1, the 
initialization of h by the number of times where p11 is equal to zero, l = 1, j = 2 and 
for z = 1 to i -1 ph z = pj-1, z and the second part is varies from ph2 = p j-1,2 - l where l 
varying from 1 until the cancellation of pj-1,2, the following pieces placed on the 

remaining part of R by: for i varying from 3 to n, phi = 
	 ∑ ×

. This process 

is repeated for each part until i = n-1. The following algorithm explains this 
situation well: 
Algorithm 1 
1. Calculate the areas si = li × wi, then arrange the si in descending order s1 ˃ s2 ˃ 

s3, … sn, where n is the number of pieces requested. 
2. Determine the first row of the matrix P by: 

a) Calculate p11 = , 

b) To pose j = 1, for i = 2 to n  do  p1i = 
∑ ×

 , 

3. set i = 1, h = 1, k = 1 
a) set j = 1, d = 1, 
b) if pji ˃ 0 then j = j + 1, l = 1, 
c) h = h + 1, 
d) if i = 1 then phi = p j-1,i- l 

          for i = k + 1 to n do phi = 
	∑ × 		

, 

e) else for z = 1 to i-1 do phz = p j-1,z, 
          for i = k do phi = p j-1,i- l, 

           for i = k + 1 to n do phi =
	∑ × 		

, 

f) if phi ˃ 0 then set l = l + 1, d = d + 1 and go to (c) else go to (g), 
g) d = d + 1, 
h) if d ˂ m, then go to (b), 
i) else if i ˂ n-1 then set i = i + 1, k = k + 1 and go to (a), else stop, 
j) else set j = j + 1, d = d + 1 and go to (b). 
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3.2 Construction of the cutting plans 
      The construction of cutting plans based on the generation of all feasible cutting 
patterns which makes it possible to construct cutting plans, satisfying the demands, 
thanks to a subset of these patterns. These different cutting plans represent all the 
feasible solutions, each of which is characterized by a number of setups and the 
total quantity of falls, revolves around two stages: 
  
       The first consists in grouping together all the cutting patterns which do not 
deal with the first type of parts and we put it in a set B1, (practically we search for 
all the rows that have zeros in the same column of the matrix P and we put it in a 
set B1), then we search for all the cutting patterns that do not deal with the second 
type of parts and we put it in a set B2, this procedure is carried out until the search 
for all the cutting patterns which do not process the nth type of parts and we put it in 
a set Bn. 
While the second is justified by the following proposition: 
Proposition: Let Ω = B1∪ B2 ∪ ... ∪ Bn be a subset of ℕ and {Pi} included in at 
least one subset Bk where k ≥ 1, if there exists at least one subset Bd ⊂ B ∪ B ∪ …∪	B 			 (complement of Bi ∪ Bj ∪… ∪ Bh) then {Pi} ∩ Bd = ∅. 
Prove: by contraposition, we have Pi} ∩ Bd ≠ ∅ ⇒ ∀ Bd ⊂ Ω, Bd ⊄ B ∪ B ∪ …∪	B 			,  
By suppose we have: {Pi} included in at least one subset Bk ⇒ {Pi}⊂ Bk ˅ {Pi} ⊂ 
Bk ∧ Bj ˅ {Pi}⊂ Bk ∧ Bj … ∧ Bh … ˅ {Pi}⊂ Bi ∧ Bj … ∧ Bh … ˅{Pi}⊂ Bk ∧ Bj … ∧ Bh… ∧ Bn so like {Pi}⊂ Bi ∧ Bj … ∧ Bh then{Pi}⊂ Bi ∩ Bj … ∩ Bh and another 
by {Pi} ∩ Bd ≠ ∅ ⇒ {Pi} ⊂ Bd ⇒ {Pi}⊂ Bd ∩ Bi ∩ Bj … ∩ Bh ⇒ Bd ⊂ Bi ∪ Bj … ∪ 
Bh ⇒ Bd ⊄ B ∪ B ∪ …∪	B 			. 
While section planes are constructed in the following two ways: 
1. We arrange the elements of the sets Bk in the non-decreasing order P1 to Pm 

where m the number of the elements of all the sets then for i varying from 1 to 
m-1  we determine Pi belong to sets Bk, where k = 1, 2 … and subsets of (l -1) 
elements in which Pi and the (l -1) elements do not belong to the same set as 
well Pi and the (l -2) elements do not form a cutting plane in previous step 
where l = 2, 3 ... 

2. We add to the best cutting plans on the two objective functions of the previous 
step a cutting pattern in order to reduce the different types of demand. 

The construction of the cutting planes is continuous, until either ∑ X  theoretical 

value ∑ X  = 
∑ ×

 or is no improvement of the solutions.  

Algorithm 2 

1. Calculate the theoretical value:  ∑ X  = 
∑ ×

, where ⌈ ⌉ is the upper 

whole part 
2. If there is a line Pi ∈ P, does not contain zeros, then determine the cutting 

plane pdk = Pi, where i, k are positive integers and go to (a), else go to (3), 
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a) Calculate x = Max , where P  ≠ 0,  

b) Calculate the trim loss: pti =	S × x −	∑ s 	d , 
c) Calculate Pt = Min (Pti), 

3. For j = 1 to n do 
       For i = 1 to m do  

a) If Pij = 0, then  Aij = {Pi}, else Aij = Ø, 
b) For i = 1 to m do Bj = ⋃ A ,  

4.   Arrange the cutting patterns in non-decreasing order P1 to Pm, 
5.  To pose l = 2, t =1, 

a) If there are cutting plans with l - 1 number of setups, then add to each 
effective plan at l - 1 number of setups, a cutting pattern in such a way to 

reduce the largest values of  where bij = ∑ P  and go to (b) else go to 

(b),  
b) For i = t to m-1 do  

1.  Determine Pi belong to sets Bk, k = 1, 2, …. 
2. If there are subsets of (l -1) elements in which Pi and the (l -1) elements do not 

belong to the same set thus the (l - 2) elements do not form cutting planes in the 

previous step then determine the cutting planes Pdh = 
P(l	 − 1)		elements , h = 

1, 2…, and to pose t = t + 1 else to pose t = t + 1 and go to (b) 

c)  Calculate h  =	∑ P , xj = Max 	 , x  = ∑ x , and Min (x ), 

d) If there are x  redundant  are equal and x ˃ Min (x )  
         Then eliminate redundant x  and go to (e) else go to (e), 

e) Calculate the trim loss: pt =	S	 × Min	 x −	∑ s d  , 

f) If ∑ X  reaches or is no improvement of the solutions, stop, else set l: = l + 
1 and go to (a). 

3.3 Fineness of the Algorithm 
       We check in this paragraph that the number of iterations is finite and the 
algorithm does not loop:  
Cutting pattern generation algorithm: The idea in this step consists in calculating 
the frequency p11 of the first part s1 on the main rectangle S and each time 
decreased this frequency by 1 until the cancellation of p11 and calculate the other 

frequencies by p1i = 
	∑ ×

, the algorithm reiterated for each part until i = 

n-1. Indeed a considered part is not revisited a second time, so the algorithm does 
not loop and as the number of parts is finite then the number of iterations are finite,  

The proposed algorithm consists of searching for one by the lines that contain zeros 
from the first column, until the rows that contain zeros from the nth column, in a 
matrix of size m × n, so the algorithm starts from the first column and arrives at the 
nth column, therefore, the algorithm does not loop and as the matrix is of finite size 
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then the number of iterations is finite, the other by in the sets Bj which to build 
from the first step, the algorithm searches in each iteration for the subsets of l 
elements in which each l-1 where l = 2, 3…, elements belong to different sets, up 
to which the stop test is reached, therefore, the algorithm is finished and does not 
loop.  
 
         4. Results and discussion 
 
4.1. Results 
       We present in this section some results obtained by our proposed approach, as 
well as a comparative study with methods existing in the literature. 
Example 1. In this example we run the proposed algorithm 
• S = L × W = 60 × 40 = 2400 
• n = 3, 
• si = (l1 × w1, l2 × w2, l3 × w3) = (50 × 25, 25 × 20, 20 × 12) = (1250, 500, 400) 
• d = (d1, d2, d3) = ((2, 3, 1). 
This example presented explaining the flow of our proposed algorithm. 
1. Arrange in descending order, 1250 > 500 > 400,  

2. Determine the first row of the matrix P by: p11 = = 1  

a)  To pose j = 1, for i = 2 to 3  do  p12 =	 	 	× = 2, P13 

=	 	 	× 	 	× = 0,   P = (1   2   0) 

3. To pose i = 1, h = 1, k = 1,  
a) To pose j =1, d =1,  
b) P11 = 1 ˃ 0 then j = j + 1 = 2, l = 1, 
c) h := h + 1= 2, 
d)   i = 1, p21 = p11 – 1= 0,  

 For i = 2 to 3 do p22 =
	 × = 4, p23 =

	 × 	 × = 0,   

P = 1				2			00				4				0 , 

e) P21 = 0, go to (g), 
g)  d = d +1= 2, 
h)   i = 1˂ n -1 = 1 then i = i + 1= 2, k = k + 1 = 1 + 1= 2 and go to (a), 
a)  To pose j = 1, d = 1, 
b) P12 = 2, ˃ 0 then j = j + 1 = 2, l = 1, 
c) h = h + 1 = 3 
d) i ˃ 1 then for z =1 to 1 do p31 = p11 = 1,  

for i = k = 2 do p32 = p12 – 1 =  2 – 1 = 1, 

for i = 3 to 3 do p33 =
	 × 	 ×

 = 1, 

 

P = 
1				2			00				4				0			1				1				1			  
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We continue the generation the achievable cutting patterns, the results in the 
following matrix  

 
Table 1. Matrix of feasible cutting patterns 

 

P = 	
1				2			00				4				01				1				11				0				20				3				20				2				3	0				1				4	0				0				6

 

 
 

1. ∑ X  = 
∑ ×

 =  = 2, 

2. Pd1 = (1, 1, 1) is a cutting plane, X  = Max ( , 	, ) = 3 

Pt1 =2400 × 3 – (1250 ×2 + 500 × 3 + 400×1) = 28%, 
3. 1th iteration: For j = 1, for i = 1  to 8 do 

a) P11 = 1, then  A11 = Ø,  P21 = 0, then  A21 = {P2}, P31 = 1,  then  A31= Ø, P41 = 
1,  then  A41 = Ø, P51 = 0,  then A51 = {P5}, P61 = 0,  then   A61 ={P6}, P71 = 0,  
then   A71 = {P7}, P81 = 0,  then   A81 = {P8}, go to (b), 

b) For i = 8 to pose B1 = ⋃ A , = A11∪ A21∪ A31∪ A41∪ A51 ∪ A61 ∪ A71∪ 
A81 = Ø	∪ {P2}∪ Ø ∪ Ø	∪{P5}∪{P6}∪{P7}∪{P8} = { P2, P5, P6, P7, P8}, 

2th iteration: For j = 2, for i = 1 to 8 do 
a) P12 = 2, then  A12 = Ø,  P22 = 4, then  A22 = Ø, P32 = 1,  then  A32 = Ø, P42 = 0,  

then  A42 = {P4}, P52 = 3, then A52 = Ø, P62 = 2,  then A62 = Ø, P72 = 1,  then  
A72 = Ø, P82 = 0,  then  A82 = {P8}and go to (b),  

b) For i = 8 to pose B2 = ⋃ A , = A12∪ A22∪ A32∪ A42∪ A52 ∪ A62 ∪ A72∪ 
A82 = Ø ∪ Ø	∪ {P4} ∪ Ø ∪  Ø ∪ Ø ∪ Ø	∪{P8} = {P4 , P8}, 

3th iteration: For j: = 3, for i = 1 to 8 do  
a)  P13 = 0, then  A13 = {P1},  P23 = 0, then  A23 = {P2}, P33 = 1,  then  A33 = Ø, 

P43 = 2,  then  A43 = Ø, P53 = 2,  then  A53 = Ø, P63 = 3,  then  A63 = Ø, P73 = 
4,  then  A73 = Ø, P83 = 6,  then  A83 = Ø go to (b), 

b) For i = 8, to pose B3 = ⋃ A , = A13∪ A23∪ A33∪ A43∪ A53 ∪ A63 ∪ A73 ∪ 
A83 = {P1}∪{P2} ∪ Ø ∪ Ø ∪ Ø ∪  Ø ∪  Ø ∪  Ø = { P1, P2}, 

We have:  B1 = {P2, P5, P6, P7, P8}, B2 = {P4, P7}, B3 = {P1, P2}, 
1th iteration :  to pose l = 2,  
 ∃ Pd1 = (1, 1, 1) cutting plans with 1 number of setups, we   add to Pd1, P1 in such 

a way to reduce   and . So Pd2 = (P1, P4) a cutting plane with 2 numbers of 

setups.  
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Pd2 =    P = (1, 2, 0)P = (1, 1, 1), we calculate: x = 
	Max , , 0 	= 	1				Max , , 	= 1			 

 
a) Arrange the cutting patterns in non-decreasing order P1 to P8 
b) For i = 1 to 8 do  

1. determine Pi belongs to sets Bk, where k = 1, 2, 3  
2. For P1 ∈ B3, ∃ {P4},{P5},{P6}, {P7}, {P8} three subsets, in which P4,	P ,	P , 

P7 and P8, does not belong to B3, thus the P4,	P , P6, P7 the same P8 do not 
form cutting planes in the previous step then  

Pd3 =   
PP , Pd4 =   

PP , Pd5 =   
PP , Pd6 =   

PP , Pd7= 
PP , 

calculate:	x =
	Max , , 0 	= 	2		Max , 0, 	= 1	,	x =

	Max , , 0 	= 	2				Max 0, , 	= 	1          x , x ,                           
 
We represent all the feasible solutions with two numbers of setups in the following 
table: 

Table 2. Set of feasible solutions for two numbers of installations 

N° 

Solution  
Feasible solutions 

The number of 

times the pattern j is 

used (xj) 

Percent (%) of 

trim loss 

Number of 

setups 

1 
P1 = (1, 2,  0) 

P3 = (1, 1, 1) 

1
1

 4.00 2 

2 
P1 = (1, 2,  0) 

P4 = (1, 0, 2) 

2
1

 28.00 2 

3 
P4 = (1, 0,  2) 

P6 = (0, 2,  3) 

2
2

 52.00 2 

4 
P4 = (1, 0,  2) 

P7 = (0, 1,  4) 

2
3

 76.00 2 

 
 
Min(x ) = Min(x , x , x ,	x ,	x , 	x ,	x , x , x ) = x .  
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Stop, because the theoretical value of ∑ X = = 2 , so Min(x ) = x = 2, 
c) Pt = 2400 × (1 + 1) - 4400 = 4 %,  

So all the effective solutions presented in the following table: 
 

Table 3. Set of effective solutions 
 

 
 
 
 
 
 
 

 
Example 2. We use in this section, an example cited in [7]. A floor tile 
manufacturing plant uses rectangular shaped marble sheets of length 3000 mm and 
width 1400 mm as raw material to cut tiles according to the given specifications.  
The company has received an order for kitchen tiles according to the dimensions 
given below:  
• S = 3000 x 1400 = 4×104, 
• n = 6, 
• s = (l1 x w1, l2 x w2, l3 x w3, l4 x w4, l5 x w5, l6 x w6) = (132 x104, 80 x104, 112 x104, 
84x104, 60x104, 128 x104),  
• d = (d1, d2, d3, d4, d5, d6) = (1, 5, 4, 1, 1, 3).  

a. Algorithm 1 is applied to generate the feasible cutting patterns the results are 
illustrated in the annex1 table.  

b. ∑ X  = 
∑ ×

 = 
××  = 4, 

c. There is not a cutting pattern applied to all types of parts, so go to (d), 
d. B1 = {P4, P8, P9, P10, P11, P12, P13, P18, P19, P20, P21, P22, P23, P24, P25, P26, P27, 

P28, P36, P37, P38, P39, P40, P41, P42, P43, P44, P45, P46, P47, P48, P49, P50, P51, P52, 
P53, P54, P55, P56, P57, P58, P59, P60, P73, P74, P75, P76, P77, P78, P79, P80, P81, P82, 
P83, P84},  
B2 = {P1, P5, P7, P10, P12, P13, P14, P15, P16, P17, P20, P21, P22, P23, P24, P25 P26, P27, 
P28, P29, P31, P32, P33, P34, P35, P43, P44, P45, P46, P47, P48, P49, P50, P51, P52,  P53, 
P54, P55, P56, P57, P58, P59, P60, P61, P62,  P63, P64, P65, P66, P67, P68, P69, P70, P71, 
P72, P80, P81, P84},  
B3 = { P1, P2, P3, P4, P13, P14, P15, P17, P18, P19, P25, P26, P27, P28, P29, P30, P33, 
P34, P35, P36, P39, P40, P41, P42, P47, P48, P49, P50, P51, P52,  P53, P54, P55, P56, P57, 
P58, P59, P60, P61, P63, P67, P68, P69, P70, P71, P72, P73, P77, P78, P79, P80, P81, P82},  
B4 = { P1, P2, P3, P4, P5, P6, P7, P8, P9, P21, P24, P28, P29, P30, P32, P35, P36, P38, 
P41, P43, P45, P46, P56, P57, P58, P59, P60, P61, P62, P63, P65, P66, P67, P68,  P69, P73, 
P75, P76, P77, P78, P79, P82, P84},  

N0 of 

Solutions 

Effective 

solutions 

Percent (%) of trim 

loss 

Number of   

setups  

1 Pd2 4.00 2 

2 Pd1 28.00 1 
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B5 = { P1, P2, P3, P4, P5, P6, P8, P10, P11, P12, P13, P16, P17, P19, P42, P43, P44, P46, 
P47, P49, P51, P55, P60, P61, P63, P64, P66, P69, P70, P72, P73, P74, P76, P79, P83} 

B6 = { P1, P2, P3, P4, P5, P6, P8, P10, P11, P12, P13, P16, P17, P18, P19, P20, P21, P25, 
P26, P27, P28, P30, P31, P32, P33, P34, P35, P36, P37, P38, P39, P40, P41, P81, P83, P84}, 

 1th iteration: To pose l = 2, 
a) ∄ cutting plans with 1 number of setups, so go to (b), 
b) Arrange the cutting patterns in non-decreasing order P1 to P84 
c) For i = 1 to 83 do  

1. Let P1 ∈ B2, P1 ∈ B3, P1 ∈ B4, P1 ∈ B5, P1 ∈ B6,  
2. ∄ Subsets of (2 -1) elements in which P1 and the (2 -1) elements do not 

belong to the    same, set t = t + 1 = 1 + 1 = 2 and go to (b).  
1. Let P2 ∈ B3, P2 ∈ B4, P2 ∈ B5, P2 ∈ B6,  
2. ∃ {P22},{P23} three subsets, in which P22 and P23, does not belong to B3, B4 

B5 and B6 thus the P22,	P  do not form cutting planes in the previous step 

then Pd1= 
P = (2		1		0		0		0		0)P = (0		0		1		2		1		1), Pd1= 

P = (2		1		0		0		0		0)P = (0		0		1		1		2		1) . We 

continue in the same way and we eliminate the redundant plans. 
We represent the results in the following table: 
 

Table 4. Feasible solutions for two numbers of setups  
 

N° Feasible solutions 

The number of 

times the pattern j 

is used (xj) 

Percent (%) of 

trim loss ×104 

Number of 

setups 

1 
 P16 = (1, 0, 1, 2, 0, 0) 

P62 = (1, 1, 0, 0, 1, 1) 

4
5
 22.72 2 

2 
P3 = (1, 2, 0, 0, 0, 0) 

P22= (0, 0, 1, 2, 1, 1) 

3
4
 12.56 2 

3 
P6 = (1, 1, 1, 0, 0, 0) 

P22= (0, 0, 0, 3, 1, 1) 

3
5
 18.52 2 

4 
P17 = (1, 0, 0, 3, 0, 0) 

P22= (0, 1, 1, 0, 1, 1) 

5
1
 10.12 2 

5 
P7 = (1, 0, 2, 0, 0, 1) 

P18= (0, 2, 0, 1, 1, 0) 

3
3
 10.12 2 
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6 
P8 = (0, 2, 1, 0, 0, 0) 

P71= (1, 0, 0, 1, 1, 2) 

4
2
 10.12 2 

7 
P9 = (0, 1, 2, 0, 0, 1) 

P33= (1, 0, 0, 2, 1, 0) 

5
1
 10.12 2 

 
Min(Pt) = 420 × 104 × 6 – 1508 ×104 = 1012× 10 , this result corresponds to the 
solution: Pd4, Pd5, Pd6, Pd7, so this solution is effective. ∑ X  = 6 (For effective solutions) greater than the theoretical value ∑ X  = 4. 
So go to new iteration. 
2th iteration:  

a) ∃ Pd6 = (P8, P71) effective solution with 2 number of setups,  

We add to Pd6 = (P8, P71), P43 in such a way to reduce	 , so Pd8 = (P8, P43, P71) a 

cutting plane with 3 numbers of setups. Go to (b), 
b. We eliminate the redundant plans then we represent the results in the following 

table:  
Table 5. Feasible solutions for two numbers of setups 

N° Feasible solutions 
The number of times 
the pattern j is used 
(xj) 

Percent (%) of 
trim loss ×104 

Number of 
setups 

8 
P8 = (0, 2, 1, 0, 0, 0) 
P16 = (1, 0, 1, 2, 0, 0) 
P62 = (1, 1, 0, 0, 1, 1)

2
2
3
 12.56 3 

9 
P3 = (1, 2, 0, 0, 0, 0) 
P22= (0, 0, 1, 2, 1, 1) 
P76 = (0, 1, 1, 0, 0, 3) 

2
2
1
 5.92 3 

10 
P9 = (0, 1, 2, 0, 0, 1) 
P31 = (1, 0, 1, 1, 1, 0) 
P76 = (0, 1, 1, 0, 0, 3) 

3
1
1
 5.92 3 

11 
P8 = (0, 2, 1, 0, 0, 0) 
P43 = (0, 0, 3, 0, 0, 1) 
P71= (1, 0, 0, 1, 1, 2) 

3
2
1
 10.12 3 

3th iteration:  
Min(Pt) = 420 × 104 × 5 – 1508 ×104 = 592 × 10 , this result corresponds to the 
solution: Pd9, Pd10 so this solution is effective. 
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∑ X  = 5 (For effective solutions) greater than the theoretical value ∑ X  = 4.  
We eliminate the redundant plans then we represent the results in the following 
table: 

Table 6. Feasible solutions for two numbers of setups 

N° Feasible solutions 
The number of 
times the pattern j 
is used (xj) 

Percent (%) of 
trim loss ×104 

Number of 
setups 

12 

  P8 = (0, 2, 1, 0, 0, 0) 
 P16 = (1, 0, 1, 2, 0, 0) 
 P62 = (1, 1, 0, 0, 1, 1) 
 P76 = (0, 1, 1, 0, 0, 3) 

2
2
2
1

 12.56 4 

13 

P3 = (1, 2, 0, 0, 0, 0) 
P8 = (0, 1, 2, 0, 0, 0) 
P22= (0, 0, 1, 2, 1, 1) 
P76 = (0, 1, 1, 0, 0, 3) 

2
2
1
1

 10.12 4 

14 

P4 = (0, 3, 0, 0, 0, 0) 
P8 = (0, 2, 1, 0, 0, 0) 
P43 = (0, 0, 3, 0, 0, 1) 
P71= (1, 0, 0, 1, 1, 2) 

1
1
1
1

 1.72 4 

 
 
Min(Pt) = 420 × 104 × 4 – 1508 ×104 = 172 × 10 , this result corresponds to the 
solution: Pd14, so this solution is effective. ∑ X  = 4 (For effective solutions) greater than the theoretical value ∑ X  = 4. 
So stop.  
So the effective solutions are presented in the following table:  

Table 7. Effective solutions.  

N° of 
solution 

Solutions efficaces Percent (%) of 
trim loss × 104         

Number of setups 

1 

P4 = (0, 3, 0, 0, 0, 0) 
P8 = (0, 2, 1, 0, 0, 0) 
P43 = (0, 0, 3, 0, 0, 1) 
P71= (1, 0, 0, 1, 1, 2) 

1.72 4 
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Example 3.   
• S = 6480 × 342020,  
• n = 13, 
• s = (s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13) = (510× 250, 600 × 235, 680 
×186, 720 × 376, 730 × 220, 760 × 224, 900×410, 950×400, 1020 ×520, 1100× 
632, 1140×547, 1200 ×643, 1356×700),  
• d = (d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13) = (54, 18, 61, 17, 33, 14, 12, 
12, 32, 30, 22, 32, 54). 

Table 8.Result obtained by our algorithm 
 
N° effective solutions Percent (%) of Trims loss Number of  setups 

1 1.41 11 
2 1.83 10 
3 2.07 9 
4 3.61 8 
5 3.79 7 
6 4.03 6 
7 5.12 5 
8 6.22 4 

 
 
4.2 Discussion 
       In this empirical study, we observed that the multi-objective method is useful 
because it provides a set of effective solutions which are used to give the choice to 
the decision maker. 
 
          5. Conclusion 
 
             In this work, we have adopted a multi-objective approach, to solve a two-
dimensional cutting stock problem with a setup cost, the problem, therefore, 
consists in minimizing two objective functions: the total trims loss of the raw 
material and the number of setups, under the constraint of fulfilling the order. This 

 
2 P8 = (0, 2, 1, 0, 0, 0) 

P43 = (0, 0, 3, 0, 0, 1) 
P71= (1, 0, 0, 1, 1, 2) 

5.92 3 

 
3 

P8 = (0, 2, 1, 0, 0, 0) 
P71= (1, 0, 0, 1, 1, 2) 

10,12 2 
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approach makes it possible to obtain a set of efficient solutions which are not 
generally evaluated by a common scalar function. 
 
        The technique is abundantly efficient in a wide range of examples, when 
taking into account the result obtained by other methods exists in the literature. 
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